Azure DevOps <> Jira Cloud Keep Issue hierarchy
Epic -> Feature -> Story, Task -> Sub-task

In this documentation, | will show you how to keep the Epic link and issue link between issues and work items in Jira Cloud and Azure DevOps

Depending on your instance you can use different issueTypes.

1) From Azure DevOps to Jira Cloud

ADO Outgoing Sync

First, we need to add a few new lines in the Outgoing script.
ADO Outgoing sync
replica.parentld = workltem parentld

def res = httpOient.get("/_apis/w t/workitens/${workltem key}?\ $expand=rel ati ons&api - versi on=6. 0", f al se)
if (res.relations = null)

replica.relations = res.relations

We need the parentld to check if an issue has a parent so we can link them together.

With the httpClient we get the relations of the issues if the issue does not have a relation to another issue we don't set the "replica.relations" variable.

Jira Cloud Incoming Sync

In the Jira Incoming sync, we'll start from the top and work to the bottom, you'll just have to Copy & paste these values and change some values so they
match your instance.

It will be clear where and when you need to change these values.

The first code we are going to change is in the if(firstSync) block.

1) First sync block

@ Change to your values

Change the projct name the your project name & Change the typeMap to your issueTypes (you can choose how you want to map your
issueTypes).

1. So first you need to change the project name to your Jira Cloud project name.
2. Change the values in the typeMap to the issueTypes you have on your ADO instance (the types before ":") and the IssueTypes on your Jira
instance (the types after ":")
a. Example: ["Azure devOps":"Jira Cloud"]
3. Online 11 we'll set the issueType when the type is found in the TypeMap it will set issueType to that value if it's not found it's going to look if the
issuetype exsists in your project if not it will set it to a default value, a Task in this case.
4. Then on line 14, we check if the issueType is an epic, if it's an epic we will set the Epic name to the given summary

Jira Incoming Sync

if(firstSync){
/1 Change <Project name> to your project nane
i ssue. proj ect Key = " DEMD'
/1 This typeMap hass the values that are comng fromADO if a value is not found set it to a default val ue
("Task" in this case).
def typeMap = [
/1 "ADO side":"Jira Coud side"
"User Story":"Story"
]

i ssue. t ypeNane = nodeHel per. get | ssueType(typeMap[replica.type?. nanme], issue. projectKey)?. name ?:
nodeHel per. get | ssueType(replica.type?. nane, (issue.projectKey ?: issue.project.key))? nane ?: "Task"

i ssue. sunmary = replica. summary

if (replica.typeName == "Epic") {

i ssue. custonfi el ds. "Epi ¢ Nanme".val ue = replica. summary

}

store(issue)

2) Link issues

Here we will determine which issue needs to be linked to which issue, If the issue does not have a parentld it does not need to be linked.

@ Change to your values

The issueTypes shown below can be different than your issueTypes (Feature) can be something else on your instance.

1. We are going to check if the issueType is a Feature (this can be different in other instances, change "Feature" to the issueType that suits you)
and that the parentld is not empty

2. The Feature here is linked under the Epic so when it's a feature we will link it to the Epic if the parentld is not empty.

3. When the next issue (Story) has a parent (Feature) they have a relation link and then the 2 issues will be linked together

Jira Incoming Sync

/1 This will check if the issueType is a Feature and if there is a parentld nowit wll
feature.
/1 And it will only link the issues as a child issue under the feature
if (issue.typeName == "Feature" && replica.parentld) {
def | ocal Parent = syncHel per. getLocal | ssueKeyFronmRenot el d(replica. parentld.toLong())
if (local Parent) {
i ssue. cust onFi el ds. "Epi ¢ Link".value = |ocal Parent.urn

}

}else {

replica.relations. each {
relation ->
/1 We check on the Related attribute fromADO and link it wiht Relates in Jira

if (relation.attributes.name == "Parent"){

def a = syncHel per. getLocal | ssueKeyFronRenoteld(rel ation.url.tokenize('/")[7
if (issue.issueLinks[0]?.otherlssueld != a?.id){

def res = httpClient.put("/rest/api/2/issuel${issue. key}", """

{

"update": {
"issuelinks":[
{
"add": {
"type":{

"name": " Rel at es"

h
"out war dl ssue": {
"key":"${a.urn}"

}

}
}
")

3) Status mapping (additional)

If you also want to map your status for multiple issueTypes you can use this function.

G) Change to your values

link the epic with the

1)/1?. urn

Change the values to the values you get from ADO (first values before the ":") and the values you have in your Jira issueTypes (last values after

the ":")

Jira Incoming Sync

def setStatus(){
/1 First we determ ne which |Issue Type has which statuses Epic, Feature, Story, etc...
def statusMappingEpic = [
/1 "ADO val ues":"Jira Val ues"
"COpen": " Open",
"Doing":"In Progress”,
"Cl osed": " Done"

def statusMappi ngFeature = [
/1 "ADO val ues":"Jira Val ues"
"To Do":"Open",
"Doing":"In Progress",
"C osed": " Done"
]
def statusMappingStory = [
/1 "ADO val ues":"Jira Val ues"
"To Do":"Qpen",
"Doing":"In Progress",
"d osed": " Done"
]
def renoteStatusNane = replica.status.nane // Status nane fromthe ADO side
/1 W& wil check which issueType this issue has and them map the right Statuses to it, the default value is
set to the default value you want.

if (issue.type.nane == "Epic"){ return statusMappi ngEpi c[renpteStatusNane] ?: "Open"}
if (issue.type.name == "Feature"){ return statusMappi ngFeature[renoteStatusNane] ?: "Open"}
if (issue.type.name == "User Story"){ return statusMappi ngStory[renoteStatusNane] ?: "Open"}

/1 W return the right value and set the right Status in your issue

}
/1 W do this after the first sync other wise it can cause troubles.
if (!firstSync){

wor kl t em set St at us(set Status())

4) System & Custom Fields.

Now we have done the parent-child link we only need to add the System or custom fields that you also want to set in your Jira issue.

Jira Incoming Sync

i ssue. sumary = replica. sunmary

i ssue. description = replica.description

i ssue. coment s = comment Hel per. ner geComment s(i ssue, replica)

i ssue. attachnments = attachnentHel per. mergeAttachments(issue, replica)
i ssue. | abel s = replica.labels

/] Custom Fi el ds
/1issue. custonFi el ds. "CF Nane".val ue = replica. custonFi el ds."CF Nane". val ue

2) From Jira Cloud to Azure DevOps

Jira Cloud Outgoing Script

First, we need to add a few values in the Jira Outgoing sync.

By default "replica.parentld = issue.parentld" is already in the outgoing script but check this to be sure.

Jira Outgoing sync

/1 Add these to the outging script
replica.linkedl ssues = i ssue.issuelLinks
replica.parentld = issue.parentld

We need the linked issues and the parentld to see in ADO which issues are linked with each other.

Azure DevOps Incoming Sync

Here we also start from the top to the bottom, you can also copy & paste these values and change them where needed to match your instance values.

It will be clear where and when you need to change these values.

1) First sync block

@ Change to your values

Change the projct name the your project name & Change the typeMap to your issueTypes (you can choose how you want to map your
issueTypes).

1. So first you need to change the project name to your Jira Cloud project name.
2. Change the values in the typeMap to the issueTypes you have on your Jira instance (the types before ":") and the IssueTypes on your ADO
instance (the types after ":")
a. Example: ['Jira Cloud":"Azure devOps"]
3. Online 10 we'll set the issueType when the type is found in the TypeMap it will set issueType to that value if it's not found it's going to look if the
issuetype exsists in your project if not it will set it to a default value, a Task in this case.

ADO Incoming Sync

if(firstSync){
wor kIt em projectKey = "<project nane>"
def typeMap = [
/1 "Jira O oud":"ADC'

"Epic" : "Epic",
"Feature": "Feature",
"Story" : "User Story"

]

wor kIt em t ypeName = nodeHel per. get| ssueType(typeMap[replica.type?. nanme], issue.projectKey)?. name ?:
nodeHel per. get | ssueType(replica.type?. name, (issue.projectKey ?: issue.project.key))?. name ?: "Task"

wor kI t em sunmary = replica.summary

store(issue)

2) We will set the parentld if the remote issue has a parentld

ADO Incoming sync

workltem parentld = null
if (replica.parentld) {
def | ocal Parent = syncHel per. getLocal | ssueKeyFronRenot el d(replica. parentld.toLong())
if (local Parent) {
workltem parentld = | ocal Parent.id

}

@ Change to your values

On line 1 change <ADO Project> to your actual project.

ADO Incoming Sync

def res =httpClient.get("/<ADO Project>/_apis/wt/workltens/${workltemid}/revisions",true)

def await = { f -> scala.concurrent.Awai t$. MODULES. resul t (f, scal a.concurrent. duration.Duration.apply(1, java.
util.concurrent. TineUnit. M NUTES)) }

def creds = await(httpCient.azureCient.getCredentials())

def token = creds. accessToken()

def baseUrl = creds.issueTrackerUrl ()

def project = workltem projectKey

def localUrl = baseUrl + '/_apis/wit/workltens/' + workltemid
int x =0

res.val ue.rel ati ons. each{
revision ->
def createlterationBodyl = [
[
op: “"test",
path: "/rev",
value: (int) res.value.size()

op: "renove",
path:"/rel ati ons/ ${ ++x}"

}

def 1inkTypeMapping = [
"relates to": "System LinkTypes. Rel at ed"
]
def linkedlssues = replica.linkedl ssues
if (linkedlssues) {
replica.linkedl ssues. each{
def | ocal Parent = syncHel per. getLocal | ssueKeyFronRenotel d(it. otherlssueld.toLong())
if (!local Parent?.id) { return; }
local Ul = baseUrl + '/_apis/wit/workltenms/' + |localParent.id
def createlterationBody = [
[
op: "test",
path: "/rev",
value: (int) res.value.size()

op: "add",
path:"/relations/-",
val ue: [
rel :1inkTypeMappi ng[it.linkNane],
url:local Ul,
attributes: [
comrent:""

]

def createlterati onBodyStr = groovy.json.JsonCQutput.toJson(createlterationBody)
converter = scal a.collection.JavaConverters;
arrForScal a = [new scal a. Tupl e2(" Cont ent - Type", "appl i cati on/j son-pat ch+j son")]
scal aSeq = converter.asScal alteratorConverter(arrForScala.iterator()).asScala().toSeq();
createlterati onBodyStr = groovy.json.JsonCQutput.toJson(createlterationBody)
def result = await(httpCient.azureCient.ws
.url (baseUrl +"/ ${project}/_apis/w t/workitens/${workltemid}?api-versi on=6.0")
. addHt t pHeader s(scal aSeq)
. Wi t hAut h(t oken, token, play.api.libs.ws.WAut hSchene$BASI C$. MODULES)
.wi thBody(play.api.libs.json.Json.parse(createlterationBodyStr), play.api.libs.ws.
JsonBodyW it abl es$. MODULES. wri t eabl eOf _JsVal ue)
. Wi t hMet hod(" PATCH")
.execute())

3) Status mapping (additional)

If you also want to map your status for multiple issueTypes you can use this function.

@ Change to your values

Change the values to the values you get from Jira (first values before the ":"

the ":")

You can add other Issuetype Statues.

ADO incoming

def setStatus(){

/1 First we determ ne which Issue Type has which statuses Epic,
def st at usMappi ngEpi c

set

}

def

]

]

def
11 Ve wil

=

/1 "Jira val ues":"ADO Val ues"
" Open": " Open",

"I'n Progress":"Doing",

"Done": " Cl osed"

st at usMappi ngFeature = [

/1 "Jira val ues":"ADO Val ues"
“Open":"To Do",

"lIn Progress":"Doing",
"Done":"d osed"

def statusMappingStory = [
/1 "Jira val ues":"ADO Val ues"
"QOpen":"To Do",
"In Progress":"Doing",
"Done": "C osed"

r enot eSt at usNane

to the default val ue you want.

f (issue.type.nane == "Epic"){

f (issue.type.name

return statusMappi ngEpi c[renot eSt at usNane]
if (issue.type.name == "Feature"){ return statusMappi ngFeature[renoteStatusNanme] ?:
"User Story"){ return statusMappi ngStory[renoteStatusNane] ?:

) and the values you have in your ADO issueTypes (last values after

Feature, Story, etc...

replica.status.nane // Status nane fromthe Jira side
check which issueType this issue has and them nmap the right Statuses to it,

the default value is
?: "QOpen"}

"To Do"}
"To Do"}

/1l W return the right value and set the right Status in your issue

/1 W do this after the first sync other wise it can cause troubles.

if

(1

firstSync){

wor kl t em set St at us(set Status())

4) System & Custom Fields.

Now we have done the parent-child link we only need to add the System or custom fields that you also want to set in your Jira issue.

ADO Incoming Sync

wor kI t em sunmary
wor kl t em descri ption
wor kl t em att achnent s
wor kl tem comment s
workltem | abel s
workltempriority

= replica. summary
replica. description

comment Hel per. mer geComment s(wor kl tem
replica.labels
replica.priority

at t achnent Hel per . ner geAtt achment s(wor kl t em

replica)
replica)

And you're done This is the implementation to keep the issue link hierarchy.

Here is an image of how a Task and a sub-task are synced over from Jira in ADO.

TASK 194 -<«fjmmm—
194 New Task To ADO
& No one selected (10 Comments Add Tag
State To Do Area Christophe
Reason @ Added to bac Iteration Christophe
p—
Exalate
Here is an image of how the Epic hierarchy is synced over
FEATURE 192 < mmm—
192 New Test Feature
& No one selected ()0 Comments Add Tag
State To do Area Christophe\Exalate\Exa 1
Reason & Moved to state To do Iteration Christophe\Exalate
Custom -
Demo Script “
Discussion A~

@ Saveand Close % Follow (&)

Updated by Christophe De Beule: Just now

Details © @ 1 2 0

status reporting

v~ Development

Add link

Link an Azure Repos commit, pull
request or branch to see the status
of your development. You can also
create a branch to get started.

Related Work

Add link v

Add an existing work item as a parent

ﬁ Child

195 New Sub Task to ADO
Updated Just now @ To Do

@ SaveandClose % Follow & &}

Updated by Christophe De Beule: 16m ago

Details © © 2 ? 0

"W for Boards in your pipeline's Options
menu. Learn more about deployment
status reporting

Development

Add link

Link an Azure Repos commit, pull

Py request or branch to see the status

(’ of your development. You can also
create a branch to get started.

Related Work

Add link
Parent
ﬁ W 191 New Test Epic
Updated 177m ago = Open
sl Child

B 193 New Test User Story
Updated 177m ago @ To do

Projects / (@ Demo /| E3 DEMO-620

[New Test Epic

@ Attach & Addachildissue @ Link issue
Investigation reason None
Description

Add a description...

Tempo Team None
Account None
Child issues

[DEmO-621 New Test Feature

Projects / (@ Demo |/ DEMO-620 / £ DEMO-621

New Test Feature

@ Attach [Create subtask (P Linkissue v

Investigation reason None

Description
Add a description..

Tempo Team None

Account None

Linked issues
relates to

) pemo-622 New Test User Story

Projects /| (@ Demo /| [J DEMO-622

New Test User Story

@ Atach B Create subtask @ Linkissue v
Investigation reason None

Description
Add a description...

Tempo Team None

Account None

Linked issues
relates to

O DEMO-621 New Test Feature

v ®Md Tempo to plan and track time

Order by

= e OPEN v

@Md Tempo to plan and track time ~ «ee

@Aﬂd Tempo to plan and track time ~ e««

= e OPEN v/

(©) Link goals

+

& e 6 < -
Open v £ Actions v
Your pinned fields -

Epic Link
New Test Epic

Details -~

Assignee
e Unassigned
Assign to me

Reporter
° Exalate

Labels
None
£ o b < -
Open v £ Actions v
Your pinned fields -

Epic Link
None

Details -~

Assignee
e Unassigned

Assign to me

Reporter
©Q cxiete

Labels

None

	Azure DevOps <> Jira Cloud Keep Issue hierarchy

