Jira Cloud Azure DevOps: Bi-directional hierarchy sync

Recently a client approached us with a very specific requirement of syncing their Epic-Story relationship from Jira Cloud to
the Feature-Task relationship in Azure DevOps i.e.

Epic (Jira) becomes a Feature (ADO).

Story (Jira) becomes a Task (ADO).

The hierarchy must be maintained bi-directionally.

Another requirement was to map all Features coming from Jira to be placed under a specific Epic in ADO.
The issueLInks (specifically the relates to link) must also be maintained bi-directionally.

A custom status mapping must be maintained from Jira to ADO side only.

The following graphic depicts what the end goal of this synchronization is envisaged to be:

‘!“‘ JirG q Azure DevOps

Epic
Epic

PARENT

‘~ Feature

PARENT PARENT

Story 1

Story 2

Task 1 Task 2

RELATES TO

RELATES TO

Independent Story Independent Task

Let us start by looking at each direction separately here:

Jira Cloud to Azure DevOps:
In order to achieve this use case, Jira needs to be ensure that it is sending out the requisite info i.e. parent info and issueLinks.

This can be achieved by adding the following to the Jira Outgoing script (in addition to the default scripts):

Jira Outgoing

replica.linkedl ssues = issue.issueLinks
replica.parentld = issue.parentld

Once ADO receives this information as part of the replica, it will have several tasks. The first is to map the issue types.

This can be achieved by adding the following to the ADO Incoming script:

ADO Incoming

if(firstSync){
/1 Set type nane from source entity, if not found set a default
workltem projectKey = "Mjids Devel opment”
def typeMap = [
"Epic" : "Feature",
"Story" : "Task"
]
wor kl tem t ypeNane = nodeHel per. get| ssueType(typeMap[replica.type?. nane], workltem proj ect Key) ?. name ?: "Task"
wor kl t em summary = replica. summary
if(replica.issueType. nane=="Epic")
workltem parentld = "9785"
store(issue)

Note: Here 9785 is the workltem number for the static Epic that each Feature must be created under.

Also note the use of the store() function here to commit the changes.

The next task on the ADO Incoming side is to deal with the Epic-Story hierarchy arriving from the Jira side.

This can be done by using the parentld information from the replica. Please add the following to the ADO Incoming script:

ADO Incoming

if (replica.parentld) {
def | ocal Parent = syncHel per. getLocal | ssueKeyFronRenot el d(replica. parentld.toLong())
if (local Parent) {
workltem parentld = | ocal Parent.id

}

Note: The getLocallssueKeyFromRemoteld() method of syncHelper is immensely useful here to fetch the correct parent locally.

The last piece of the puzzle would be to remove any existing links on the ADO side, and repopulate them according to the latest information

contained in the replica. We can do that by adding the following to the ADO Incoming script:

ADO Incoming

https://docs.exalate.com/docs/how-to-use-a-storeissue-function
https://docs.exalate.com/docs/getlocalissuekeyfromremoteid

def res =httpCient.get("/Mjids¥@0Devel opnent/_api s/ wit/workltens/ ${workltemid}/revisions",true)

def await = { f -> scala.concurrent.Awai t$. MODULES. resul t (f, scal a.concurrent. duration.Duration.apply(1, java.
util.concurrent. TineUnit. M NUTES)) }

def creds = await(httpCient.azureCient.getCredentials())

def token = creds. accessToken()

def baseUrl = creds.issueTrackerUrl ()

def project = workltem projectKey

def localUrl = baseUrl + '/_apis/wit/workltens/' + workltemid
int x =0

res.val ue.rel ati ons. each{
revision ->
def createlterationBodyl = [
[
op: “"test",
path: "/rev",
value: (int) res.value.size()

op: "renove",
path:"/rel ations/ ${++x}"

}

def 1inkTypeMapping = [
"relates to": "System Li nkTypes. Rel at ed"
]
def linkedlssues = replica.linkedl ssues
if (linkedlssues) {
replica.linkedl ssues. each{
def |ocal Parent = syncHel per. getLocal | ssueKeyFronRenot el d(it. otherlssueld.tolLong())
if (!localParent?.id) { return; }
local Ul = baseUrl + '/_apis/wit/workltens/' + |ocal Parent.id
def createlterati onBody = [
[
op: "test",
path: "/rev",
value: (int) res.value.size()

op: "add",
path:"/relations/-",
val ue: [
rel:l'inkTypeMappi ng[it.!|inkNane],
url:local Ul,
attributes: [
comrent:""

]

def createlterati onBodyStr = groovy.json.JsonCQutput.toJson(createlterationBody)
converter = scal a.collection.JavaConverters;
arr For Scal a = [new scal a. Tupl e2(" Cont ent - Type", "appl i cati on/j son-pat ch+j son")]
scal aSeq = converter.asScal alteratorConverter(arrForScala.iterator()).asScal a().toSeq();
createlterati onBodyStr = groovy.json.JsonCQutput.toJson(createlterationBody)
def result = await(httpdient.azureCdient.ws
.url (baseUrl +"/ ${project}/_apis/w t/workitens/${workltemid}?api-versi on=6.0")
. addHt t pHeader s(scal aSeq)
. Wi t hAut h(t oken, token, play.api.libs.ws.WAut hSchene$BASI C$. MODULES)
.wi thBody(play.api.libs.json.Json.parse(createlterationBodyStr), play.api.libs.ws.
JsonBodyW it abl es$. MODULES. wri t eabl eOf _JsVal ue)
. Wi t hMet hod(" PATCH")
.execute())

The ADO script can close with a custom status mapping:

ADO Incoming

def statusMapping = ["To Do":"New', "In Progress":"Active", "Done" : "C osed"]
def renoteStatusNane = replica. status. nane
wor kl t em set St at us(st at usMappi ng[r enot eSt at usNane])

Azure DevOps to Jira Cloud:

Similarly to the above, this time ADO needs to ensure that the requisite data is being send to the Jira side. ADO send out the parentld for the parent child
type

of relationships and then runs an API call to get all other links.

This can be done by adding the following code snippets to the ADO Outgoing script:

ADO Outgoing

replica.parentld = workltem parentld

def res = httpCient.get("/_apis/wt/workitens/${workltem key}?\ $expand=rel ati ons&api - versi on=6. 0", f al se)
if (res.relations !'= null)
replica.relations = res.relations

Once Jira receives the data from ADO, it needs to firstly map the issue types:

JiraIncomng

if(firstSync){
i ssue. proj ect Key ="C™m
/1 Set type name from source issue, if not found set a default
def typeMap = [
"Feature":"Epic",
"Task":"Story"
1
i ssue. t ypeNane = nodeHel per. get | ssueType(typeMap[replica.type?. name], issue.projectKey)?. nane //?:
"Task"
i ssue. summary

replica. sunmary

if (replica.typeNane=="Feature") {
i ssue. cust onFi el ds. "Epi ¢ Nane".val ue = replica. summary

}

store(issue)

The next task is for Jira to create the correct hierarchy. The Epic-Story relationship can be easily created by using the Epic Link field:

JiraIncomng

if (replica.parentld) {
def | ocal Parent = syncHel per. getLocal | ssueKeyFronRenot el d(replica. parentld.toLong())
if (local Parent) {
i ssue. custonfi el ds. "Epi ¢ Link".value = | ocal Parent.urn

}

The last thing left to do is to ensure that the issueLInks are created appropriately as well. This can be done by a custom API call

by using the relations data being sent by ADO (see above):

Jiralncomng

replica.rel ations. each {
relation ->

if (relation.attributes.name == "Rel ated"){
def a = syncHel per. getLocal | ssueKeyFronRenotel d(relation.url.tokenize('/"')[7])//?.urn
if (issue.issueLinks[0].otherlssueld != a.id){
def res = httpClient.put("/rest/api/2/issuel${issue.key}", """
{
"updat e": {
"issuelinks":[
{
"add": {
"type": {

"name": " Rel at es"

b
"out wardl ssue": {
"key":"${a.urn}"

}

The entire code snippets for this example are included here:
ADO Incoming.groovy

ADO Outgoing.groovy

Jira Incoming.groovy

Jira Outgoing.groovy

A video demonstration of this use case in action can be seen here:

Happy Exalating!

https://community.exalate.com/download/attachments/58502390/ADO%20Incoming.groovy?version=1&modificationDate=1685213162346&api=v2
https://community.exalate.com/download/attachments/58502390/ADO%20Outgoing.groovy?version=1&modificationDate=1685213162319&api=v2
https://community.exalate.com/download/attachments/58502390/Jira%20Incoming.groovy?version=1&modificationDate=1685213162286&api=v2
https://community.exalate.com/download/attachments/58502390/Jira%20Outgoing.groovy?version=1&modificationDate=1685213162245&api=v2

	Jira Cloud Azure DevOps: Bi-directional hierarchy sync

