
Jira Cloud Jira OnPrem: Full Agile Synchronization
This use case is very often encountered when companies need to collaborate on a certain project but would prefer to continue to use their own systems.
Exalate can bridge the gap by syncing all the agile objects and maintain the relationships among items. All items are linked bi-directionally of course and
the Jira boards also remain synced in real time.

We use an example of a Jira Cloud and Jira Server synchronization covering the following:

Sprints are synced bi-directionally with all the meta data
Epics and its child objects are synced across while ensuring that the relationships among the Epic and child tickets are maintained.
Adding any tickets to a sprint should reflect on the remote board as well.
Starting and completing a sprint should sync over and reflect on the remote board.
Updating issues, changing swim lanes and creating new issues should all reflect on the remote board.
Dynamically sync across versions and components if they are not present on the remote side.

The following graphic shows some of the objects and relationships we are syncing across:

There are many facets to this use case. Let us look at how each object is synced across:

Epics

We can easily by including the following lines of script:sync Epics in Jira Cloud

Cloud Outgoing: Epic.sendInAnyOrder()
Cloud Incoming: Epic.receive()

We can include the exact same lines on the , but please ensure that you have placed the script in the correct Jira Server side to sync Epics Epics.groovy
directory.

Sprints

In order to send over the , we used the following script in the Outgoing side of Jira Cloud:sprints from the Cloud side

Cloud Outgoing

def boardIds = ["5"] //Boards which sprints will get synced
if(entityType == "sprint" && boardIds.find{it == sprint.originBoardId}){
 replica.name = sprint.name
 replica.goal = sprint.goal
 replica.state = sprint.state
 replica.startDate = sprint.startDate
 replica.endDate = sprint.endDate
 replica.originBoardId = sprint.originBoardId
}

https://docs.exalate.com/docs/how-to-sync-epics-in-jira-cloud
https://docs.exalate.com/docs/how-to-sync-epics-in-jira-on-premise
https://stash.idalko.com/projects/EESFJS/repos/exalate-external-scripts-library-for-jira-server/raw/Epic.groovy?at=refs%2Fheads%2Fmaster
https://docs.exalate.com/docs/how-to-sync-sprints

: Please remember to configure the board id that you need to sync in the first line. Note

On the , we included the following script to receive and process the sprint correctly:Jira Server side

Server Incoming

if(entityType == "sprint"){
 //Executed when receiving a sprint sync from the remote side
 def sprintMap = ["5":"37"] //[remoteBoardId: localBoardId]
 sprint.name = replica.name
 sprint.goal = replica.goal
 sprint.state = replica.state?.toUpperCase()
 sprint.startDate = replica.startDate
 sprint.endDate = replica.endDate
 def localBoardId = sprintMap[replica.originBoardId]

 if(localBoardId == null){
 throw new com.exalate.api.exception.IssueTrackerException("No board mapping for remote board id
"+replica.originBoardId)
 }
 sprint.originBoardId = localBoardId //Set the board ID where the sprint will be created
}

 The only things that you need to configure is the sprintMap to include the board mappings between the two systems. Note:

Also, please remember to create a trigger to sync the sprints!

The last piece of the puzzle is to assign the correct Sprint field value to the issues under sync. On the server side, you will need to include the following in
the Incoming side:

Server Incoming

def sprintV = replica.customFields.Sprint.value?.id.collect{
 remoteSprintId ->
 return nodeHelper.getLocalIssueKeyFromRemoteId(remoteSprintId, "sprint")?.id?.toString()
 }.findAll{it != null}
issue.customFields."Sprint".value = sprintV

Versions

In order to dynamically sync Versions between and side, we include the following script on the Outgoing side of both Server and Cloud:Cloud Server

Outgoing

replica.fixVersions = issue.fixVersions
replica.affectedVersions = issue.affectedVersions

and the following on the Incoming script on Server and Cloud to create any missing sprints:

https://docs.exalate.com/docs/jira-on-premise-d0267c9-how-to-sync-sprints
https://docs.exalate.com/docs/how-to-synchronize-versions-in-jira-cloud
https://docs.exalate.com/docs/how-to-synchronize-versions-in-jira-on-premise

Incoming

issue.fixVersions = replica
 .fixVersions
 .collect { v -> nodeHelper.createVersion(issue, v.name, v.description) }
issue.affectedVersions = replica
 .affectedVersions
 .collect { v -> nodeHelper.createVersion(issue, v.name, v.description) }

Components

In order to dynamically sync Components between and side, we include the following script on the Outgoing side of both Server and Cloud:Cloud Server

Outgoing

replica.components = issue.components

In order to dynamically create the components on the Cloud side, add the following script on the Incoming side of the Cloud:

Cloud Incoming

issue.components = replica.components.collect{
 nodeHelper.createComponent(
 issue,
 it.name,
 it.description,
 it.leadKey,
 it.assigneeType.name()
)
}

In order to select the correct component on the Server side, please include the following script on the Incoming side of the Server:

Server Incoming

issue.components = replica.components
 .collect { remoteComponent ->
 nodeHelper.getComponent(
 remoteComponent.name,
 nodeHelper.getProject(issue.projectKey)
)
}.findAll()

You can download the entire code used in this use case . here

A short video demonstration of the use case in action is as follows:

https://docs.exalate.com/docs/how-to-sync-components-in-jira-cloud
https://docs.exalate.com/docs/how-to-sync-components-in-jira-on-premise
https://community.exalate.com/download/attachments/58499293/Agile%20Use%20Case.zip?version=1&modificationDate=1676051409411&api=v2

	Jira Cloud Jira OnPrem: Full Agile Synchronization

